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•  A generic model of double-clamped bistable buckled beams under center and off-center point force actuation based on the Euler–Bernoulli
beam theory.
•   Analytical formulas of a bistable beam's critical behavioral values that characterize its snap-through properties, which give rise to a rapid and
computationally efficient design method of double-clamped bistable buckled beams.
•   An analysis of the influence of design parameters on the snap-through characteristics of bistable buckled beams, with results validated by
finite element analysis (FEA) simulations.
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Double-clamped  bistable  buckled  beams  demonstrate  great  versatility  in  various  fields  such  as
robotics,  energy  harvesting,  and  microelectromechanical  system  (MEMS).  However,  their  design
often requires time-consuming and expensive computations. In this work, we present a method to
easily  and rapidly design bistable buckled beams subjected to a transverse point  force.  Based on
the  Euler–Bernoulli  beam  theory,  we  establish  a  theoretical  model  of  bistable  buckled  beams  to
characterize  their  snapthrough properties.  This  model  is  verified against  the results  from a finite
element  analysis  (FEA)  model,  with  maximum  discrepancy  less  than  7%.  By  analyzing  and
simplifying our theoretical  model,  we derive explicit  analytical  expressions for  critical  behavioral
values on the force-displacement curve of the beam. These behavioral values include critical force,
critical  displacement,  and  travel,  which  are  generally  sufficient  for  characterizing  the  snap-
through properties of a bistable buckled beam. Based on these analytical formulas, we investigate
the influence of a bistable buckled beam's key design parameters, including its actuation position
and  precompression,  on  its  critical  behavioral  values,  with  our  results  validated  by  FEA
simulations.  Our  analytical  method  enables  fast  and  computationally  inexpensive  design  of
bistable buckled beams and can guide the design of complicated systems that incorporate bistable
mechanisms.
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1     Introduction

Bistable  mechanisms,  featuring their  two stable  equilibrium
states,  have  been  under  investigation  for  a  long  time.  These
mechanisms are  ideal  as  switches  because  power  is  only  re-
quired for switching them from one equilibrium state to the oth-

er but not for maintaining a current state. Meanwhile, their rap-
id and large-stroke transition between the two stable states dur-
ing snap-through motions makes  them great  candidates  for  ac-
tuators. Thanks  to  these  advantages,  bistable  structures  are  ex-
tensively harnessed in various engineering domains, such as mi-
croelectromechanical  system  (MEMS)  [1–3],  robotics  [4–6], en-
ergy  harvesting  [7–9],  actuators  [10, 11 ],  origami  technology
[12, 13 ],  signal  propagation  [14],  and  deployment  mechanisms
[15].  In  addition,  bistable  mechanisms  possess  high  reliability
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and  high  structural  simplicity  and  consume  relatively  little
power  when  incorporated  into  mechanical  systems,  which  are
potentially desirable  for  aerospace  applications,  e.g.  energy  ab-
sorbing  [16] when  aerospace  devices  are  subjected  to  founda-
tion  excitation  [17, 18 ]  or  sudden  unbalance  [19]. These  desir-
able properties  suggest  more  dedicated  efforts  be  put  into  in-
vestigating these mechanisms.

Among  various  types  of  bistable  mechanisms,  double-
clamped bistable buckled beams (Fig.  1) have drawn the atten-
tion of  many  researchers,  thanks  to  their  remarkable  manufac-
turability and versatility [10, 20, 21]. Early on, Vangbo [22] stud-
ied the nonlinear behavior of bistable buckled beams under cen-
ter actuation with a Lagrangian approach under geometric con-
straints and was able to express both the bending and the com-
pression  energy  associated  with  the  snap-through  motion  with
buckling  mode  shapes  of  the  bistable  beam.  This  method  was
verified by Saif [3], who also extended the method to tunable mi-
cromechanical bistable systems. Qiu et al. [23] then explored the
feasibility of this method on double curved beams (i.e. two cent-
rally-clamped parallel  beams).  Moreover,  an  analytical  expres-
sion of the relationship between the force applied at the beam's
center and  the  corresponding  displacement  was  derived,  mak-
ing  the  characterization  and  design  of  the  bistable  mechanism
easier.  Nevertheless,  most efforts  were put into the modeling of
bistable buckled beams under center actuation, while only a few
works [24, 25] have tackled the modeling of  bistable beams un-
der  off-center  actuation.  Still,  off-center  actuation  possesses
unique behavioral properties that make it suitable for many ap-
plications.  For  example,  compared to  center  actuation,  off-cen-
ter actuation usually  requires  a  smaller  actuation force  but  fea-
tures  a  longer  actuation  stroke  [26, 27 ].  In  addition,  off-center
actuation schemes highly pertain to applications with geometric
constraints at the mid-span position of the beam [28]. In this pa-
per,  we  extend  the  work  of  Vangbo  [22]  to  bistable  buckled
beams under  off-center  actuation  to  facilitate  their  design  pro-
cess based on theoretical analysis.

The  design  of  bistable  mechanisms  largely  relies  on  their

F cr

wcr

wtr

snap-through characteristics.  Typically,  the  snap-through  char-
acteristics of a bistable structure can be primarily represented by
three behavioral values, i.e. the critical force  and the critical
displacement  at  the  bistable  mechanism's  switching  point,
as well as the travel  at the stable equilibrium point, as shown
in the force-displacement curve in Fig.  2. These critical  behavi-
oral values  are  determined  by  design  parameters,  i.e.  the  geo-
metry  (including the length,  width and thickness  of  the slender
beam),  precompression  [22],  actuation  position  [25, 29 ],  and
boundary  conditions  [26, 30 ].  Due  to  the  complicated  coupling
between snap-through characteristics and design parameters, it
is  often challenging to  design a  bistable  structure efficiently.  So
far, lots  of  efforts  aiming at  efficiently  designing bistable  mech-
anisms have been made. Camescasse et al.  [25, 31] investigated
the influence of the actuation position on the response of a pre-
compressed beam  to  actuation  force  both  numerically  and  ex-
perimentally,  based on the elastica approach.  A semi-analytical
method for  analyzing  bistable  arches,  which  involves  numeric-
ally  extracting  critical  points  from  bistable  arches'  force-dis-
placement curves, was also presented in previous works [32, 33].
Due to  the  intrinsically  strong nonlinearity  of  bistable  mechan-
isms, existing  models  are  rather  complicated  and  usually  in-
volve differential equations that could only be solved semi-ana-
lytically  or  even  numerically.  Recently,  Bruch  et  al.  [34] de-
veloped  a  fast,  model-based  method  for  centrally  actuated
bistable buckled beams, which, however, requires heavy compu-
tation with finite element analysis (FEA) methods. Thus, rapidly
and  efficiently  designing  bistable  mechanisms,  especially  those
under off-center actuation, remains a huge challenge.

In  this  work,  we  develop  a  method  for  the  rapid  design  of
double-clamped  bistable  buckled  beams.  Similar  to  Vangbo's
work [22], the Lagrangian approach is adopted in the theoretical
model  to  determine  the  contribution  of  each  buckling  mode
shape under geometric constraints. Through analyzing and sim-
plifying  the  theoretical  model,  explicit  analytical  expressions  of
the critical  force,  critical  displacement,  and travel  are obtained.
Moreover,  based on the presented model,  a detailed analysis of
the influence of design parameters, including actuation position
and precompression, on the snap-through characteristics of the
beam is presented and validated by an FEA model. Thus, given a
set of design parameters, our analytical formulas can output the
critical  behavioral  values  in  real-time,  consistent  with  results
from FEA simulations which usually take hours on the same ma-
chine. Specifically, the contributions of this work include:

(1)  a  generic  model  of  double-clamped  bistable  buckled
beams  under  center  and  off-center  point  force  actuation  based
on the Euler-Bernoulli beam theory;

(2) analytical formulas of a bistable beam's critical behavior-
al  values  that  characterize  its  snap-through  properties,  which
give rise to a rapid and computationally efficient design method
of double-clamped bistable buckled beams;

(3)  an  analysis  of  the  influence  of  design  parameters  on  the
snap-through  characteristics  of  bistable  buckled  beams,  with
results validated by FEA simulations.

The structure of the paper is as follows: the bistable system is
described  in  Sect.  2;  the  theoretical  model  of  bistable  buckled
beams is presented and simplified in Sect. 3; the explicit analyt-
ical  expressions  of  the  beam's  snap-through  characteristics  are
derived in  Sect.  4;  our  main  results  and  discussions  are  show-
cased in Sect. 5, followed by conclusions and future work in Sect. 6.
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Fig. 1.     Clamped–clamped bistable buckled beam. a  Non-loaded
straight beam, b beam in its buckled configuration with an actuat-
ing force  applied at the location C
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2     Description of the system

L 0

b h E P

wrise

L
d0 d0 = L 0 ¡ L

A A = b h I
¡

I = b h3=12
¢

Here  we  consider  a  clamped-clamped  and  initially  straight
elastic  beam,  as  shown  in Fig.  1.  The  original  length,  width,
thickness, and Young's modulus of the beam are denoted as ,

, , and , respectively. Under a compressive axial load , one
of  the beam's terminals  moves towards the other,  resulting in a
first-mode  buckling  shape  with  initial  rise  (i.e.  the  initial
displacement  of  the  beam's  mid-span).  The  distance  between
the two terminals of the beam after buckling, what we refer to as
the  span,  is  denoted  as ;  the  difference  between  the  original
length  and  the  span  is  denoted  as  (i.e.  ).
Moreover,  the  cross-sectional  area  of  the  beam and the  second
moment  are  denoted  as  ( )  and  , re-
spectively.

w

F w

± = (x C ¡ x A)=(x B ¡ x A)

F

The  system's  two-dimensional  reference  frame  is  chosen
such  that  the x -axis  coincides  with  the  line  connecting  the  two
ends of the beam after it is axially compressed, while the -axis
is  set  perpendicular  to  the x -axis  at  one  end  of  the  beam,  as
shown in Fig. 1. A point force  in the  direction is applied ver-
tically  to  the  buckled  beam  at  a  selected  location C .  The  ratio

 is the parameter that indicates the pos-
ition at which  is applied to the beam.

3     Modeling and analysis

In this section, a theoretical model of bistable buckled beams
is  derived  and  subsequently  simplified.  This  model  allows  for
characterizing the snap-through properties of a bistable buckled
beam and enables the derivation of analytical expressions of the
beam's important snap-through characteristics.

3.1    Theoretical model

F = 0

According  to  Euler's  buckling  model  of  a  double-clamped
slender beam,  when  the  axially  compressed  beam  is  undis-
turbed (i.e. ), its behavior can be described with the follow-
ing differential equation

wiv(x) + n2w00(x) = 0;

n2 =
P

E I
;

w(0) = w(L ) = w0(0) = w0(L ) = 0: (1) 

The eigenvalues of this homogeneous Strum–Liouville prob-

niLlem can be denoted in form of , and these eigenvalues satisfy
the equation

1¡ cos(niL ) =
1
2

niL sin(niL ): (2) 

The eigenvalues give rise to a series of  nontrivial  eigenfunc-
tions of Eq. (2)

wi(x) =

8>><>>:
Ci[1¡ cos(nix)]; i = 0; 2; 4; :::;

Cif1¡ cos(nix)¡
2

niL
[nix ¡ sin(nix)]g;

i = 1; 3; 5; :::;

niL = 2 ; 4 ; 6 ; :::; i = 0; 2; 4; :::;
niL = 2:86 ; 4:92 ; 6:94 ; :::; i = 1; 3; 5; ::::

(3) 

F w(x)When a force  is applied to the beam, its displacement 
can be described as a superposition of these eigenfunctions

w(x) =
1X

i=0

A iwi(x); (4) 

A i

L + d0 ¡ dp dp

P dp = PL=(E A)

where  the  set  of  amplitudes  minimizes  the  energy  of  the
system  under  the  constraint  of  the  beam's  current  length,

 [22].  refers to the contraction from the axial load
 and  is  given  as .  Thus,  we  have  the  following

equation

L + d0 ¡ dp =

Z L

0

p
1+ [w0(x)]2 dx ¼

Z L

0

½
1+

[w0(x)]2

2

¾
dx : (5) 

Combining Eqs. (4) and (5), we have

g( ¹A ) =
1X

i=0

A 2
i (niL )2

4
¡ (d0 ¡ dp)L = 0: (6) 

The energy of the system can be written as

U( ¹A ; F) =
E I
2

Z L

0
[w00(x)]2dx + Fw(±L ) +

Pdp

2

=
E I
4L 3

1X
i=0

A 2
i (niL )

4 + F
1X

i=0

A iwi(±L ) +
Pdp

2
; (7) 

±

where the three terms refer  to the bending energy of  the beam,
the  potential  energy  of  the  force,  and  the  compression  energy,
respectively  [22].  In  Vangbo's  work  [22],  the  parameter  in  the
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±

second energy term is always set to 0.5 as the force is applied at
the  beam's  center;  in  this  work,  however,  we  allow  to  vary  in
order to account for off-center actuation.

A i U

¸

F

Therefore, we solve for the  that minimize  in Eq. (7) and
conform  to  the  constraint  specified  by  Eq. (6) .  We  introduce  a
Lagrange  multiplier  in  order  to  find  the  equilibrium  state  of
the beam under a force . We consider

K ( ¹A ) = U( ¹A ; F)¡ ¸g( ¹A ): (8) 

A iThe solutions  should satisfy

@K
@A i

= 0 and
@K
@¸

= 0: (9) 

¸Solving Eq. (9), with  chosen in the same way as in Vangbo's
work [22], we have

A i =
2FL 3wi(±L )

E I(niL )2[(´L )2 ¡ (niL )2]
with ´2 =

P
E I

: (10) 

F
´

Combining  Eq. (10)  and  the  constraint  given  by  Eq. (6) ,  we
can  determine  the  magnitude  of  when  given  a  value  of  the
parameter 

F(´) =
E I
p
(d0 ¡ dp)L

L 3

s
1P

i=0

w2
i (±L )

(niL )2[(´L )2 ¡ (niL )2]2

with dp =
PL
E A

=
´2L I

A
: (11) 

Also, combining Eqs. (4) and (10), we have

w(´) =
2F(´)L 3

E I

1X
i=0

w2
i (±L )

(niL )2[(´L )2 ¡ (niL )2]
: (12) 

F w
P P = ´2E I

Equations (10)–(12) characterize the connections among the
actuating force , the beam's displacement , and the axial load

 ( ) applied to the beam from side walls.  Importantly,
the obtained force-displacement curve can be used to character-
ize the mechanical properties of the bistable buckled beam.

3.2    Reduced model

w0(x) w1(x)
w(x)

w(x) = A 0w0(x) + A 1w1(x)

As largely mentioned in Refs. [23, 24], the first two modes of
buckling,  and  ,  have  predominant  contribution  in
the beam's displacement  in both center and off-center ac-
tuation  scenarios  [24].  Thus,  we  can  make  the  approximation
that  and write

F(´)=
E I
p
(d0 ¡ dp)L

L 3

s
w2

0(±L )
(n0L )2[(´L )2¡(n0L )2]2

+
w2

1(±L )
(n1L )2[(´L )2¡(n1L )2]2

;

(13)

w(´) =
2F(´)L 3

E I

½
w2

0(±L )
(n0L )2[(´L )2 ¡ (n0L )2]

+
w2

1(±L )
(n1L )2[(´L )2 ¡ (n1L )2]

¾
: (14) 

P(´) = ´2E IMoreover, recall that  and that we have

P0 = n2
0E I with n0L = 2 ;

P1 = n2
1E I with n1L = 2:86 ; (15) 

P0 P1

P0 P1

where  and  represent the axial compressive load of the first-
mode  and  second-mode  buckling,  respectively.  Note  that  the
switching of the beam always features an axial load greater than

 but not exceeding  [22].

4     Analytical expressions of the snap-through characteristics

F cr wcr

wtr

Generally,  the  three  critical  behavioral  values, , ,  and
 on the force-displacement curve are sufficient for character-

izing  a  bistable  buckled  beam  and  facilitating  its  design.  Given
the  significance  of  these  behavioral  values,  it  is  worthwhile  to
develop explicit analytical expressions for each of them.

4.1    Critical force

F cr

F(´) 2 < ´L < 2:86 ;
The magnitude of  can be considered the maximum of the

function  in Eq. (13) when 

F cr = max[F(´)] with 2 < ´L < 2:86 : (16) 

h
p

d0L
To  simplify  Eq. (16) ,  we  take  advantage  of  the  fact  that  the

thickness of the beam  is much smaller than  [22, 24, 31].
Therefore, we have

dpL =
I
A
(´L )2 =

1
12

h2(´L )2 ¿ d0L : (17) 

Hence, we can assume a simplified version of Eq. (16)

F cr =
E I
p

d0L
L 3

max[P(´)] with 2 < ´L < 2:86 ;

P(´) =
1s

w2
0(±L )

(2 )2[(´L )2 ¡ (2 )2]2
+

w2
1(±L )

(2:86 )2[(´L )2 ¡ (2:86 )2]2

:

(18)

Notice that we have

w0(±L ) = 1¡ cos(2 ±);

w1(±L ) = 1¡ cos(2:86 ±)¡ 2
2:86

[2:86 ±¡sin(2:86 ±)]: (19) 

argmax[P(´)]
^́ max[P(´)]

± max[P(´)]
[2 ; 2:86 ] ± F 0(±)

It can be observed from Eqs. (18) and (19) that 
(denoted  as )  and  thus  are  only  dependent  on  the
parameter .  In  other  words,  we  can  denote  on

 as a function of , written as . So we have

F cr =
E I
p

d0L
L 3

F 0(±):
(20) 

F 0 ±

F 0

F 0(±)

± F 0(±) ±

F 0

To obtain an analytical form of , we vary  from 0.15 to 0.5,
the scope of  this  parameter  within our consideration (note that
by  symmetry,  we  only  need  to  consider  one  half  of  the  beam),
and  calculate  the  corresponding  values  of .  We  then  apply
curve-fitting  to  obtain  an  analytical  relationship  between 
and .  as a function of  is visualized in Fig. 3 and presen-
ted in Eq. (21) with the error of fitting less than 7%.  is chosen
as a degree-4 polynomial to ensure relatively high accuracy and
acceptable complexity  of  the model.  Note that  this  curve-fitting
can be reperformed to improve the accuracy of the final result or
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to reduce the complexity of the model.
F cr

±

The analytical expression of the critical force  at a precom-
pressed beam's switching point can be written as Eq. (21). Note
that  the  minimal  critical  force  is  achieved  where  is  equal  to
0.37 (or 0.63)

F cr =
E I
p

d0L
L 3

F 0(¾);

¾ = min(±; 1¡ ±);

F 0(¾) = 50588¾4 ¡ 69285¾3 + 36606¾2 ¡ 8894:5¾+ 914:9: (21) 

4.2    Critical displacement

wcrThe  critical  displacement  can  also  be  written  in  form  of
an analytical expression of the basic parameters. From Eqs. (14)
and (21), we have

wcr = 2
p

d0L F 0(±)

½
w2

0(±L )
(n0L )2[(¹́L )2 ¡ (n0L )2]

+
w2

1(±L )
(n1L )2[(¹́L )2 ¡ (n1L )2]

¾
: (22) 

¹́ ±

wcr = 2
p

d0L w0(±)

w0 ± w0

±
w0(±) w0 ±

wcr

Since we have shown that  only depends on , we can con-
clude that  by substituting the bulk of Eq. (22)
with ,  some function of .  To obtain an analytical form of ,
we  vary  the  parameter  from 0.15  to  0.5  and  calculate  the  cor-
responding values of .  as a function of  is  displayed in
Fig.  3 and  its  analytical  form  is  shown  in  Eq. (23)  after  some
change of variables. The analytical expression of  is written as
follows

wcr = 2
p

d0L w0(¾);

¾ = min(±; 1¡ ±);

w0(¾) = ¡7:155¾4 + 2:872¾3 + 4:339¾2 ¡ 1:538¾+ 0:0832: (23) 

w0

L d0

±

Again,  the  curve-fitting  can  be  reperformed  for  alternative
analytical  expressions  of .  Moreover,  it  is  important  to  note
that  the  critical  displacement  is  primarily  dependent  on , ,
and ,  a  result  consistent  with  that  of  Bruch  et  al.  [35] but  ob-
tained with a different method.

4.3    Travel

The initial  shape of  an axially  compressed beam can be  ap-
proximated using the cosine curve featured in the expression of

w0(x) wtr = wrise[1¡ cos(2 ±)]=2
wrise

dp ¿ d0 dp

wrise

. Thus, we have  by definition of
the  travel,  where  is  the  initial  rise  of  the  beam's  midpoint,
determined  by  the  degree  of  compression.  Considering  Eq. (5),
since  we  have  shown  that ,  we  can  ignore  the  term 
and approximate  from the following relationship

L + d0 ¼
Z L

0

½
1+

[winit
0 (x)]2

2

¾
dx

with winit(x) =
wrise

2

·
1¡ cos

µ
2 x

L

¶¸
: (24) 

wrise = 2
p

d0L =It can be calculated from Eq. (24) that ,  and
so we have

wtr =

p
d0L

[1¡ cos(2 ±)]: (25) 

wcr=wtr ±
One  significant  observation  from  Eqs. (23)  and  (25)  is  that

the  value  of  only  depends  on  the  parameter .  The  key
insight is  that  when designing a  precompressed bistable  mech-
anism, the  possible  constraints  on  these  two  behavioral  para-
meters may uniquely determine its optimal actuation position.

5     Results and discussions

In  this  section,  we  consider  a  double-clamped  bistable
buckled  beam  with  its  parameters  given  in Table  1.  All  of  the
parameters  above  remain  unchanged  throughout  this  section
unless otherwise stated.

5.1    Model validation

F ¡ w
P ¡ w

F ¡ w
P = ´2E I

P ¡ w

To  validate  our  model,  we  compare  our  results,  the 
and  curves  for  both  center  and  off-center  actuation  of  a
bistable  buckled  beam,  with  quasi-static  force-displacement
curves from ABAQUS. The bistable beam was modeled in three
dimensions  and  its  geometry  was  meshed  with  quadrilateral
shell elements (i.e.  S4R) that can capture large deformation be-
haviors.  The  buckling  of  the  beam  was  introduced  by  an  initial
imperfection  in  the  lateral  direction.  In  our  analytical  model,
Eqs. (13) and (14) combined give rise to the  characteristic,
while the relationship  and Eq. (14) combined yield the

 curve.

5.1.1    Center actuation

± F ¡ w P ¡ wWith  set to 0.5, the  and  curves of the beam are
graphed and compared to data from an FEA model, as shown in
Fig.  4.  In  this  figure,  the  solid  black  line  represents  the  result
from the our model  while  the circles  depict  the FEA simulation
data.  Two  series  of  simulation  data  are  presented:  (1)  the  red
circles  represent  the  snap-through  motion  from  the  top  stable
equilibrium  state  to  the  bottom  one,  as  depicted  in Fig.  1(b);
(2) the blue circles correspond to the motion in the opposite dir-
ection.

a1 a2

P = P0; ´L = 2 c1 c2

P = P1; ´L = 2:86

In both diagrams, points  and  represent the beam's two
stable  equilibrium  states  that  feature  first-mode  buckling
( ).  Point  (or  )  corresponds  to  its  unstable
equilibrium  state  that  features  second-mode  buckling
( ). Points b1 and b2 are the switching points.

F
P

There is a neat agreement between the actuating force  and
the compressive force  calculated from our model and from the
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FEA model, with errors bounded within 7% and 6%, respectively.
Note that  the greatest  discrepancy occurs  around the switching
points, where the critical force is modeled fairly accurately, while
the critical displacement from our model is larger than that cal-
culated  from  the  FEA  model.  This  means  our  model  suggests  a
premature snap-through of the bistable beam.

5.1.2    Off-center actuation

± 0:37 F ¡ w
P ¡ w

Under  an  off-center  actuation  (  =  ),  the  and
 curves of the beam are shown in Fig. 5. In the same man-

ner, the solid black curves represent our analytical model while
the  red  (downward)  and  blue  (upward)  circles  come  from  the
FEA simulation results.

F ¡ w
a1

a2 P = P0 ´L = 2
c1 c2

P = P1 ´L = 2:86

Contrary  to  the  center  actuation,  the  off-center  actuation
from  the  two  directions  results  in  two  distinct  branches  in  the

 curve, as shown in both diagrams. This indicates that the
switching of the beam involves a branch jump [24]. Similarly, 
and  are the two stable equilibrium points ( , ).

 and   both  represent  the  unstable  equilibrium  state  of  the
beam ( , ), approached when the beam is actu-
ated by an off-center force from its two different stable positions.
Points b1 and b2 are the switching points of the bistable beam.

F ¡ w P ¡ w
The  results  from  our  analytical  method  are  consistent  with

the FEA simulation data. Errors on the  and  curves
with respect  to  the FEA results  are  bounded within 2% and 5%,
respectively.  The  small  magnitudes  of  these  errors  greatly
demonstrate the validity of our model.

5.2      Influence  of  design  parameters  on  snap-through
characteristics

To  facilitate  the  rapid  design  of  bistable  buckled  bistable

beams, we discuss the influence of a bistable beam's key design
parameters on its snap-through characteristics, namely its critic-
al  force,  critical  displacement,  and travel.  These results are also
verified by an FEA model.

5.2.1    Actuation position

±
F cr ¡ ± ±

± = 0:37 ± = 0:63

± = 0:37 ± = 0:63

The  impact  of  on  the  critical  force  is  visualized  in  the
 curve in Fig. 6(a). As the parameter  is varied from 0.15

to 0.85, the corresponding values of critical force are calculated.
From Fig. 6(a), it can be observed that the minimal critical force
is  obtained  when  the  beam  is  actuated  around  the  position
where  (or  the  symmetric  position  where ). In-
terestingly,  since  the  influence  of  actuation  position  on  critical
force can be assumed independent  of  other  design parameters,
as  made evident  in  Eq. (21),  any precompressed beam tends to
obtain  its  minimal  critical  force  when  its  actuation  position  is
given by  (or ). This finding pertains to applica-
tions that require the actuating force to be small.

wcr ¡ ±Moreover, the  relationship is captured in Fig. 6(c). As
the  actuation  position  moves  from  the  beam's  endpoint  to  its
midpoint, the critical displacement increases, with its increment
rate increasing. Note that the displacement is calculated with re-
spect to the x-axis.

wtr

±

Lastly,  when  the  design  parameters  of  the  beam  are  held
constant,  the  mathematical  relationship  between  the  travel 
and  simply features the cosine function discussed in Sect.  4.3,
as shown in Fig. 6(e).

F cr ¡ ± wcr ¡ ±
wtr ¡ ±

F cr wtr

wcr

wcr

± [0:37; 0:63]
wcr

As  depicted  in  the Fig.  6(a,  c,  e),  the , ,  and
 curves generated from our model are also compared with

those  from  the  FEA  model.  In  addition,  the  relative  errors  are
presented in Fig. 6(b, d, f). The relative errors of  and  with
respective  to  the  FEA simulation data  are  both bounded within
4%.  The  critical  displacement  calculated  from  our  model
matches  excellently  with  the  FEA  simulation,  even  though  the
relative error is fairly notable when the actuation position largely
deviates  from  the  beam's  center.  Within  this  range,  the  relative
error  of  is  less  informative  and  is  not  shown  in Fig  6(d).
However, in most applications,  the actuation position paramet-
er  falls  within  the  range  [24,  28,  35 ], where  the  er-
rors of  are bounded within 8%. Therefore, our model can be
considered generally feasible and accurate.

5.2.2    Precompression

In order to increase the applicability of the following analys-

Table 1   Geometric and material parameters of the beam.

Parameter Value

L 0Length  (mm) 14.9

bWidth  (mm) 3.0

hThickness  (mm) 0.132

d0Precompression  (mm) 0.3

EYoung's modulus  (GPa) 3.0
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r = d0=L 0

d0 = rL 0 L = (1¡ r)L 0

r

F cr wcr wtr

r F cr /
p

r=(1¡ r)5

wcr /
p

r(1¡ r) wtr /
p

r(1¡ r)

is,  we  define  a  parameter  that denotes  the  precom-
pression  rate  of  a  bistable  buckled  beam.  Therefore,  using  the
expressions  and , we derive the relation-
ships  among  and  the  behavioral  parameters  of  a  bistable
beam. Applying Eqs. (21), (23), and (25), we can obtain the rela-
tionships between , , and  and the precompression rate

.  These  relationships  are  given  as ,

, and .

±

These  mathematical  relationships  are  demonstrated  with  a
bistable beam with design parameters given in Table 1 and with

 set to 0.43. As shown in Fig. 7(a, c, e), all of the three values in-
crease as  the  precompression  rate  increases,  with  their  incre-
ment rates decreasing. Again, as shown in Fig.  7(b, d,  f), the er-
rors of our analytical model remain small (less than 9% for both

F cr wtr wcr

r
wcr

w0 r
[0; 0:1]

 and ),  with the exception of  the critical  displacement 
when  the  precompression  rate  is very  large.  The  enlarged  er-
ror of  when the precompression rate is large is due to the vi-
olation of the small-deflection hypothesis assumed in our mod-
el. The error of , however, is bounded within 15% when  falls
in the range ,  which indicates  that  our  model  still  greatly
applies to most circumstances [10, 20, 27].

6     Conclusions and future work

We have  proposed  a  mechanism  that  can  easily  and  effi-
ciently  characterize  the  response  of  a  double-clamped  bistable
buckled  beam  to  point  force  actuation.  Based  on  the  Euler-
Bernoulli beam theory, we have established a theoretical model
of bistable  buckled  beams  and  their  behavior  under  an  actuat-
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ing force.  Since we have extended our simulation to beams un-
der off-center actuation, our model is able to guide the design of
this class  of  bistable buckled beams.  Moreover,  through valida-
tion with  an  FEA  model,  we  have  demonstrated  that  our  pro-
posed model is highly accurate.

Our more  pragmatic  contribution  lies  in  the  analytical  ex-
pressions  of  the  snap-through  characteristics  of  a  bistable
buckled  beam  (i.e.  its  critical  force,  critical  displacement  and
travel) derived from our theoretical model after some simplifica-
tions. These analytical expressions enable rapid computation of
critical  behavioral  parameters  of  a  bistable  buckled  beam  and
thus make its design process more efficient. Based on these ana-
lytical  formulas,  we  have  also  investigated  the  influence  of  key
design parameters of  a bistable buckled beam (i.e.  its  actuation
position and precompression) on its snap-through characterist-
ics and verified our conclusions with FEA simulations.

There  are  several  directions  in  which  we  can  extend  our
work. One of our most interesting future directions is optimiza-
tion. For instance, minimizing the total energy consumption of a
bistable buckled beam's snap-through motion makes it possible
to adopt more compact actuators in an integrated system. In ad-
dition, a  possible  extension  of  the  present  work  involves  build-
ing  models  of  bistable  beams  with  other  boundary  conditions.
Most  importantly,  given  the  complicated  relationships  among
their  design  parameters  and  snap-through  characteristics,  it  is
worthwhile  to  propose  a  computational  pipeline  that  designs
bistable buckled beams with the specified critical behavioral val-
ues. In conclusion, we believe that our proposed analytical mod-
el is a significant step towards the fast and computationally inex-
pensive  design  of  bistable  buckled  beams,  which  will  be  easily
incorporated  into  more  and  more  mechanical  systems  (e.g.
shape memory alloys [36, 37] actuated bistable mechanisms).
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