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Soft Kirigami Composites for Form-Finding of Fully Flexible
Deployables

Jan Zavodnik, Yunbo Wang, Wenzhong Yan, Miha Brojan,*
and Mohammad Khalid Jawed*

A new class of thin flexible structures is introduced that morph from flat into
prescribed 3D shapes through strain mismatch between layers of a composite
plate. To achieve control over the target shape, two different concepts are
coupled. First, motivated by biological growth, strain mismatch is applied
between the flat composite layers to transform it into a 3D shape. Depending
on the amount of the applied strain mismatch, the transformation involves
buckling into one of the available finite number of deformation modes.
Second, inspired by kirigami, portions of the material are removed from one
of the layers according to a specific pattern. This dramatically increases the
number of possible 3D shapes and allows us to attain specific topologies. An
experimental apparatus that allows precise control of the strain mismatch is
devised. An inverse problem is posed, where starting from a given target
shape, the physical parameters that make these shapes possible are
determined. To show how the concept works, it focuses on circular composite
plates and designs a kirigami pattern that yields a hemispherical structure.
The analysis combines a theoretical approach with numerical simulations and
physical experiments to understand and predict the shape transition from 2D
to 3D. The tools developed here can be extended to attain arbitrary 3D
shapes. The initially flat shape suggests that conventional additive
manufacturing techniques can be used to functionalize the soft kirigami
composite to fabricate, for example, deployable 3D structures, smart skins,
and soft electromagnetic metasurfaces.

1. Introduction

Morphing planar shapes into preprogrammed 3D structures
has applications in engineering across a wide range of length-
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scales from microns[1] to meters.[2]

Since conventional additive and sub-
tractive manufacturing techniques
typically support planar fabrication,
morphing from 2D to 3D is a promising
way to achieve 3D functional surfaces
for use in, e.g., curvy electronics for
wearables,[3] camouflaging,[4] structural
health monitoring,[5] multi-functional
soft machines,[6] with existing man-
ufacturing tools. Since the introduc-
tion of bimetallic strips[7] in the 18th
century, morphing of slender struc-
tures into desired shapes has been
actuated via heat,[8,9] swelling,[10,11]

light,[12] electromagnetism,[13] chemical
gradient,[14] pneumatics,[15] growth,[16]

material anisotropy,[17] tailored ma-
terial removal,[18–20] and other forms
of external stimuli. Another approach
to morphing is inspired by origami,
which has been particularly successful
in deployable aerospace structures[21]

that require small storage space but a
large surface area. Such deployables are
typically piecewise rigid and may require
multiple springs, support structures, or
other mechanisms for deployment. In
this paper, a new class of deployables

are envisioned that morph, upon release of constraints, from a
planar shape to a prescribed 3D structure and are fully flexible
without any rigid parts. Note that our soft kirigami composite
once transformed to 3D upon release of the constraints applied
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during the fabrication can be stretched back to regain a per-
fectly flat shape without any Poisson effects. This can be very
effective for transportation and applications in space engineer-
ing, since the structure already carries the energy for self-
deployment.

Toward fully flexible shells that morph from a 2D shape to a
prescribed 3D topology, previous works on imposing mechanical
loads and boundary conditions on sheets provide a solid foun-
dation. Simply pulling a thin elastic sheet can induce 3D defor-
mation through wrinkling instabilities.[22] Grason et al. showed
that imposing curvature to elastic sheets leads to distinct types of
structural instabilities.[23] We consider this as an incompatibility
of topologies leading to complex structures. A simple instantia-
tion of this concept can be achieved by draping a flat cloth around
a spherical object. If the radius of the sphere is much larger than
the size of the cloth, the planar cloth may assume the imposed
3D topography. However, if the sizes of the cloth and the sphere
are comparable, wrinkles, and crumples form. Geometric frus-
tration leading to mechanical instabilities in sheets manifests it-
self in geometrically incompatible confinement of solids. Davi-
dovitch et al.[24] studied a class of such problems in which the
topography imposed on a thin solid body is incompatible with
its intrinsic metric and wrinkles emerged as a consequence. To
construct a specific 3D shape from sheets and avoid wrinkling,
carefully targeted portions of the material can be removed to re-
lieve these geometric frustrations, as shown e.g., in ref. [25, 26].
These earlier works on the type and size of patterns during 2D to
3D transition inspired our solution to obtain 3D structures with
a prescribed target metric. Specifically, to avoid wrinkles (which
depend on geometry and material stiffness) on the 3D struc-
ture, we explore the removal of the material to relieve geometric
frustration and study its dependence on geometric and material
properties.

New possibilities for shape selection open up when strain mis-
match is introduced within a flat structure.[27–31] Pezzulla et al.[30]

studied geometric frustration between multiple parts of the body
that leads to 3D deformation of the naturally planar object. Strain
mismatch introduced into any part of a thin body by, e.g., heat-
ing, growth, or swelling, can drastically affect the morphology
of the entire object and induce mechanical instabilities. Such
morphological changes are preponderant in biological structures
and are often necessary for their functionality; examples include
Venus flytrap, growing leaves, and the writhing of tendril bearing
climbers in plants and formation of brains, lungs, and guts in an-
imals. Combining geometric confinement with strain mismatch
can open pathways to an even broader class of topographies. Stein
et al.[32] used residual swelling and geometric confinement to
generate a range of structures including saddles, rolled sheets,
cylinders, and spherical sections. Our work synergistically com-
bines emergence of mechanical instabilities and strain mismatch
to fabricate composite shells that morph from a flat shape to a
prescribed 3D form.

In this paper, we emphasize having control over the final 3D
shape that forms by morphing from an initially planar shape.
Examples of different 3D topographies that can be obtained us-
ing our procedure are provided in the Figure S1 (Supporting In-
formation). Our work uses a hemisphere as a representative 3D
shape to observe transformation of a flat space into one with non-
negative Gaussian curvature. An intuitive (but ultimately incor-

rect) approach is presented in Figure 1A, where a “bottom” layer
is radially stretched and attached to a “top” unstretched layer to
form a soft composite shell. The shape of this composite is 3D
but not hemispherical. A number of distinct shapes can emerge
in this system, which are analyzed via physical experiments on
soft materials, numerical simulations using the finite element
method and theoretical deliberations based on plate and shell the-
ories. This lays the foundation for a solution to the hemispherical
problem. Kirigami (i.e., removal of material) to relieve geometric
frustration is introduced; a combination of kirigami and strain
mismatch is proposed to access arbitrary 3D shapes. Figure 1B
shows an example where a hemispherical shape is achieved by
tuning the kirigami pattern and the strain mismatch. A new
experimental apparatus is designed and fabricated to impose uni-
form biaxial stretch onto the bottom layer while avoiding wrin-
kling due to Poisson’s effect.[33]

Our paper is organized as follows. We commence with a de-
scription of the experimental apparatus in Physical Experiments.
Various shapes resulting from two circular layers with strain mis-
match is described in Soft Circular Composites. Application of
kirigami on this composite is introduced in Soft Kirigami Com-
posites and methods to achieve the target hemispherical shape are
discussed there.

2. Experimental Section

A snapshot of the custom designed experimental apparatus is
presented in Figure 2(A1-A2). Two main components – a 3D-
printed cylinder assembly and two vertically positioned linear
translation stages – make up the set. The hyperelastic materials
of the bottom layer (VHB 4910, 3M) and the top layer (VHB 4950,
3M) had double-side stickiness. Material properties are listed in
Section 2.1. As shown in Figure 2(A2), the bottom layer was
placed on top of the cylindrical casing. The contacting part was
pressed by a 3D-printed gripper in in Figure 2(B1-B2). The as-
sembly was then placed between two vertical linear translation
stages and the stages were moved to a specific height correspond-
ing to a speicific prestretch. As the stages were moved upward,
the piston – pushed by the height adjuster – also moved up but
the outer edge of the bottom layer remains gripped onto the
cylindrical casing. This leads to a uniform biaxial stretch in the
hyperelastic material. The relation between the imposed stretch
and height could be determined from simple geometry. The top
layer was glued onto the stretched bottom layer to form a bi-
layer composite. The bilayer composite was then cut out from
the apparatus and released from the gripper. This resulting 3D
structure was referred to as the “soft kirigami composite” in this
paper.

2.1. Physical Parameters

A commercially available acrylic adhesive (3M VHB tape) was
used as the bottom and kirigami layers. Mooney-Rivlin model
was used in the finite element simulations of Figure 3 and
Figure 5. The strain energy per unit of reference volume in this
model is

U = C1

(
Ī1 − 3

)
+ C2

(
Ī2 − 3

)
+ D1

(
J − 1

)2
(1)
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Figure 1. Overview of the problem. A) Of two circular layers, the bottom layer is stretched and adhered to the unstretched top layer to obtain a soft
composite. Upon releasing the constraints, the strain mismatch between the two layers induces symmetry breaking and the composite may assume a
buckled shape with a finite number (three in this case) of waves along the circumference. B) Replacing the top circular layer with a kirigami layer (layer
with cuts) can lead to a preprogrammed shape via the same procedure. The shape is governed by the kirigami pattern. In this case, the goal was to
obtain an axisymmetrical cap.

where C1, C2, and D1 are material parameters, Ī1 and Ī2 are the
first and second deviatoric strain invariants, and J is the elastic
volume ratio.[34] The bottom layer has a thickness of h = 1.0 mm
and its material parameters are C1 = 4.84 kPa, C2 = 14.536 kPa,
and D1 = 0.96 × 103 kPa. The kirigami/top layer is h = 1.1 mm
thick with the following material parameters: C1 = 4.00 kPa,
C2 = 78.7152 kPa, and D1 = 4.1082 × 103 kPa.

In order to normalize the elastic strain energy, it formulated a
characteristic elastic energy of the composites: E* = Yh3, where
Y = 2G(1 + 𝜈) is the effective Young’s modulus of the substrate,
h is the thickness of the substrate, and 𝜈 = (3K − 2G)/(6K + 2G),
G = 2(C1 + C2), and K = 2D1. The behavior of both materials in
an uniaxial and biaxial test is presented in Section S2 (Supporting
Information) to show that a linear approximation is reasonable.
For the soft kirigami composites in Figure 5, the number of cuts
is nc = 10, the ratio of the inner radius (ri in Figure 5A) to the outer
radius (ro) is r̄ = 0.4, and the cutout angle is d𝜃 = 0.1 radians, i.e.,
1 out of 2𝜋 radian was removed. This corresponds to portion of
the removed material 𝛼 = 0.13.

3. Soft Circular Composites

Our investigation starts with the setup described in Figure 1. A
bottom layer of circular shape is first stretched by a prescribed
amount of prestretch 𝜆 > 1 (𝜆 = 1 corresponds to stress-free con-
figuration). A stress-free circular top layer is affixed onto the bot-
tom layer. Physical parameters are described in Section 2.1. Once
the composite structure is released from the experimental setup
of Figure 2, a variety of shapes emerge depending on the pre-
stretch, 𝜆. In Figure 3A, a series of four shapes of the experimen-
tal composites are presented. These shapes – that only differ by
𝜆 – are qualitatively different. The number of wrinkles on the
outer edge of the composites, represented by the k number in the
figure, increases from k = 0 in Figure 3 A1 to k = 4 in Figure 3
A4. Figure 3B shows finite element simulations that can also cap-

ture the qualitatively distinct shapes. While developing FE simu-
lations, we realized the existence of different branches in the so-
lution space and a propensity for the FE method to reach a local
energy minimum instead of the global. Section S6 (Supporting
Information) provides details on the techniques used to address
this issue. This exposes a challenge in numerical simulation of
such structures and motivates us to fundamentally understand
the problem through a theoretical lens. The next section out-
lines the theory that was developed to explain the observations
in Figure 3.

4. Composite Plate Theory

With the following theory we reduce the complexity of the prob-
lem and analyze the main phenomena that occur in the pre-
stretched composite plate during morphing. We assume plane
stress and Kirchhoff kinematic assumption on total in-plane dis-
placement as the circular laminated composite plates used in ex-
periments are thin,[35] We use the Green-Lagrange (GL) strain
tensor under Föppl-von Karman (FvK) kinematic assumptions,
which further simplifies the theory and limits it to small strains
and moderate rotations. Without loss of physical insight we ap-
proximate the (otherwise hyperelastic, cf. Equation (1)) material
response with the St. Venant-Kirchhoff elastic material model

𝝈K =
YK

1 − 𝜈2
K

(
(1 − 𝜈K )

(
EFvK − SK

)
+ 𝜈K tr

(
EFvK − SK

)
I
)

(2)

where 𝝈K , EFvK YK, 𝜈K, SK are the Cauchy stress, strain under
the FvK assumptions, Young modulus, Poisson ratio, and pre-
strain tensor in K-th layer in the composite, respectively. As in ex-
periment, we apply the strains due to prestretch SK = −I(𝜆 − 1),
where 𝜆 and I are the applied prestretch and a unity matrix, re-
spectively. We define a membrane force and bending moment
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Figure 2. Experimental system. A1) Schematic representation of the ex-
perimental system comprised of piston, casing, height adjuster, and
annulus-shaped gripper. The bottom layer is attached above the piston.
A2) Snapshot of the system when bottom layer is still unstretched. B1)
Bottom layer is stretched by raising the piston along the z-axis and the
kirigami layer is adhered on top. B2) Snapshot of the system with soft
kirigami composites still under constraints. C1) After the constraints are
removed by cutting the bottom layer from the gripper, the soft kirigami
composite assumes the shape of a (quasi)axisymmetrical cap. C2) The re-
sulting composite is fully (elastically) flexible. It can be orderly folded or
crumpled and thus stored in confined spaces, yet it returns to its prepro-
grammed shape upon the release of constraints.

tensors (both per unit length) by integrating the section stresses
and section stresses weighted by a distance from the reference
plane through the thickness of the composite, respectively. This
is a classical procedure, yet due to multiple number of different
layers and prestretched layers it yields different results than those
in the classic shell theory. In our case both the membrane forces
N and the bending moments M are functions of the curvature
tensor 𝜿, in-plane strain tensor E0

FvK and most importantly the
prestretch 𝜆

N = 𝜶E0
FvK + 𝜷𝜿 + 𝜸(𝜆)

M = �̃�E0
FvK + �̃�𝜿 + �̃�(𝜆)

(3)

here 𝜶, 𝜷, 𝜸, �̃�, �̃�, �̃� denote auxiliary functions that are defined
in Section S3 (Supporting Information), see Equations (S5)–
(S7) (Supporting Information). The system can be decoupled

by choosing that the reference plane coincides with the neutral
plane, so that 𝜷 = �̃� = 0. Yet, the residual stresses due to pre-
stretch will still be relaxed through both, the in-plane and the
out-of-plane deformations.

Furthermore, due to the stress free boundary conditions, and
to reduce the number of unknowns, it is advantageous to formu-
late the problem in terms of vertical displacements and a stress
function, rather than vertical and in-plane displacements. There-
fore, we define an Airy stress function , so that it satisfies the in-
plane equilibrium condition,[36] By the restrictions of the in-plane
compatibility conditions, an additional condition on must hold,

Δ2 +
𝛼(1 − 𝜈

2
A)

2
[w, w] = 0 (4)

where [ , ] is the Monge-Ampere operator,[36] Furthermore, the
out-of-plane displacement w has to satisfy the out-of-plane equi-
librium conditions,

DΔ2w − ∇ ⋅
(
∇̃∇̃∇w

)
= 0 (5)

where D is the bending rigidity.

4.1. Uncut Symmetric Solution

Following experimental results shown in Figure 3, we first seek
an axi-symmetric solution, which we refer to as a “cup”. The the-
ory suggests that after the prestretched and nonprestretched lay-
ers are joined, the membrane stresses are equlibrated in both
layers after the release, but due to the coupling between mem-
brane stresses in the mid-surface of each layer, bending moments
are induced. These lead to the shortening and compressive (cir-
cular) membrane forces in the circumference of the two-layered
circular composite plate, most prominently toward the edge. By
plane equilibrium, tensile membrane forces are induced around
the center of the plate, see Figure S3 (Supporting Information).
From experiments and simulations described earlier we learn
that increasing the prestretch increases the compressive (circu-
lar) membrane forces that cause the axisymmetric cup structure
to lose its stability and wrinkle (bend) into a k-fold axisymmetric
structure to release the total strain energy.

4.2. k-Fold Axisymmetric Postbuckling

We next seek the k-fold axisymmetric solution with the following
two model functions w(r, 𝜃) = w(r) + w̃(r, 𝜃) and  (r, 𝜃) =  (r) +
̃ (r, 𝜃). Here, w(r) = ∫ 𝜑(r)dr and  (r) = ∫ 𝜙(r)dr are the axisym-
metric solutions from Section 4.1, while w̃(r, 𝜃) = f (r) cos k𝜃 and
̃ (r, 𝜃) = g(r) cos k𝜃 describe the k-fold axisymmetry. Note that
model functions w(r, 𝜃) and  (r, 𝜃) solve linearized version of
Equations (S15)-(S16) (Supporting Information) exactly, which
means that they also represent a viable solution in the immedi-
ate postbuckling. Obtained equations for f(r) and g(r) are solved
numerically for different prestretches 𝜆.

In Figure 4A, we present a maximum displacement normal-
ized with the composite radius wmax/a in a series of energetically
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Figure 3. Free buckling shapes of soft composites. A) Experimental images and B) snapshots from finite element simulations at different values of
prestretch: 1) 𝜆 = 1.015, 2) 𝜆 = 1.064, 3) 𝜆 = 1.108, and 4) 𝜆 = 1.167 to obtain different number of waves (k = 0, 2, 3, and 4, respectively) on the outer
edge. Scalebar: 1 cm. For experimental parameters and finite element simulations are described in Supporting Information.

favorable wrinkling modes as a function of prestretch 𝜆. Con-
figurations with the lowest total strain energy Etot as a function
of 𝜆 are shown in Figure 4B. For smaller 𝜆 we observe first a
twofold symmetric (Pringles chip-like) mode, followed by three-
fold, fourfold, etc. symmetric solutions, when the prestretch is
increased. This solution indicates that the wrinkling mode (i.e.,
its wavenumber) increases with the applied prestretch, similar to
what Stein-Montalvo et al.[32] reported for buckling of confined
shells. The reason for the favorization of higher wavenumber
modes at higher prestretches is that they more effectively release
the membrane strain energy by localizing bending at the edge
of the plate, while they do not increase the bending strain energy
around the center of the plate, cf. Figure S3 (Supporting Informa-
tion). In other words, if a lower mode would be forced to remain
under increased prestretch conditions it could only equillibrate
an increased load by increasing its amplitude, which also affect
the inner region of the plate in radial direction, where membrane
forces are strictly tensile.

Another reason why the higher deformation modes k are pro-
moted with larger prestretches 𝜆 is that the increasing curvature
of the system (cup solution) provides geometric rigidity, which
acts in this case analogously to an elastic substrate for edge con-
centrated wrinkles. However, our experiments and computations
show that higher wavenumber k and edge localized bending de-
formation are no longer energetically favorable when the pre-
stretch is very large.

4.3. Deep Postbuckling

Induced by a very large prestretch, a cylindrical bending so-
lution (which we refer to as a “scroll”) becomes energetically
favorable. This reduces Equation (5) to 𝜅11, 11 = 0, as only
𝜅11 ≠ 0 and 𝜅22 = 𝜅12 = 0, while Equation (4) is auto-
matically satisfied. Assuming stress free edges, we obtain
N = 0 and 𝜅11 = 𝛾0∕D, where the parameters 𝛾0 and D are de-
fined in Equation (S9) (Supporting Information). In this config-
uration, the membrane stresses are released entirely, at the price

of larger bending strain energy. However, the total strain energy
is still smaller and simplified to  = 𝜋a2𝛾2

0∕(2D).

5. Soft Kirigami Composites

Informed by the nonlinear nature of the problem and the exis-
tence of multiple branches in the previous section, we look for a
way of reaching the hemispherical cap solution without the loss
of stability and with sufficient axi-symmetry. As opposed to the
1D example,[28,37] where applying any prestretch always yields a
circular arch, compressive forces that occur on the circular plate
due to the change of circumference during bending, avert the cir-
cular plate to bend into a hemisphere,[32,38] and rather promote
k-fold wrinkling instabilities or a scroll solution at really large pre-
stretch. Intuitively, to achieve a targeted 3D topography, such as
hemispherical cap, some material has to be removed to release
the compressive forces – on exactly one layer for the self-assembly
option. This partially removes the tendency of the outer edge of
the composite to wrinkle through reduction of the compressive
membrane stresses in the structure.

Therefore, to fabricate a spherical cap of a specific height, a cer-
tain amount of material corresponding to the circular angle 2𝜋𝛼
has to be removed. Since the problem is not governed only by
the geometry, but also elasticity of the substrate, an exact amount
of 𝛼 cannot be determined directly from the desired geometry of
the cap. To achieve a high axial symmetry, intuition also suggests
to make a high number of cut-outs nc from the kirigami layer,
each cut-out being 2𝜋𝛼/nc in size. Note that these cut-outs im-
pose an immediate nc-fold symmetric shape in the (whole) com-
posite structure without buckling transition. However, it turns
out that too many cuts promote wrinkling instabilities in the
composite, but too few impair its axisymmetry. Therefore, we
search for the appropriate cutting parameters 𝛼 and nc to ensure
that the nc-fold symmetric structure is stable and axisymmetric
(hemispheric).

To experimentally realize this observation, we chose a kirigami
layer with nc = 10 cuts. Figures 5B,C show the shapes of a soft
kirigami composite at different values of prestretch from experi-
ments and simulations. At small values of prestretch, 𝜆 = {1.05,
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Figure 5. Soft kirigami composites. A) Geometric parameters of kirigami layer: cutout angle: d𝜃, inner radius ri , and outer radius, ro. B) Experimental
images and C) snapshots from finite element simulations at different values of prestretch: 1) 𝜆 = 1.05, 2) 𝜆 = 1.15, 3) 𝜆 = 1.2, and 4) 𝜆 = 1.25 to obtain
the preprogrammed shapes. It turns out that a (quasi)axisymmetrical shape is not energetically favorable for 1.15 ≲ 𝜆 ≲ 1.25 for this particular set of
material and geometric parameters. D) Normalized height, H̄ = H∕Ro, as a function of prestretch, 𝜆, where Ro is the radius of the kirigami layer. E)
Normalized strain energy, Ē, as a function of 𝜆 at two different mode shapes: k = 0 and k = 2. The strain energy has been normalized by the characteristic
bending energy, as described in the text. The inset shows the difference in normalized strain energy between the two (ΔĒ = Ēk=0 − Ēk=2, where the
subscript indicates the mode number) as a function of 𝜆. F) Critical prestretch, 𝜆k=2

crit , as a function of the portion of the removed material, 𝛼 (𝛼 = 1
means the entire layer has been removed). For experimental parameters see Section 2.1.

1.15}, the composite exhibits nc = 10-fold symmetry. However,
as the prestretch increases to 𝜆 = 1.2, the structure undergoes
buckling transition and assumes a twofold wrinkled form. Sur-
prisingly, our results show in Figure 5B,C that if the prestretch
is further increased to 𝜆 = 1.25, the previous symmetry (found
at very small prestretch) is regained and a deeper hemispherical
cap is formed.

We, first, numerically analyze the finding. Figure 5D,E show
the height, H, of the kirigami composite and the elastic energy,
E, as functions of prestretch, 𝜆. The height has been normalized
by the radius of the substrate (R = 2 cm) so that H̄ = H∕R. The
strain energy has been normalized by the characteristic elastic en-
ergy of the composite as discussed in Section 2.1. The difference
in energy between two different modes (k = 0 and k = 2) is too
small to be visually observable from the full-scale diagram, there-
fore, Figure 5E includes an inset showing the normalized differ-
ence in strain energy between the two modes: ΔĒ = Ēk=0 − Ēk=2.
Note that ΔĒ is positive between 1.15 ≲ 𝜆 ≲ 1.30; i.e., k = 2 is
energetically favorable compared with the “cup” solution corre-
sponding to k = 0 mode. Similar to our analysis of uncut compos-
ites presented above, we strive for an understanding of the inter-
play between deformation and cutting parameters of the kirigami
layer (nc, 𝛼).

We now modify our theory above to account for 1) the re-
duction of effective bending and membrane stiffness due to the
cut-out material and 2) membrane forces relaxation due to addi-
tional bending of the cut-out sectors. For the calculation of the
effective membrane and bending stiffness reduction of the soft
kirigami composite, we assume that we have nc disk sectors of
the polar angle 2𝜋𝛼/nc, where kirigami layer has been cut out
(only substrate), and nc disk sectors of the polar angle 2𝜋(1 −
𝛼)/nc with both layers. Effectively, we can model such structure
as a layered composite of multiple sub-domains with both lay-
ers and sub-domains of only substrate layer. The domains can
be viewed as parallelly connected in the radial direction and con-
nected in series in the circular direction of the composite. From
here, the effective membrane and bending stiffness of the soft
kirigami substrate can be calculated as for the regular layered
composite materials.[39] The effective transversely anisotropic
bending stiffness in the radial direction is therefore a weighted
sum Drr = 𝛼Dsub + (1 − 𝛼)Dboth (analog to parallel springs),
while the anisotropic bending stiffness in the circular direction is
D𝜃𝜃 = (𝛼/Dsub + (1 − 𝛼)/Dboth)−1 (analog to serial springs). Here-
after, the superscript sub indicates parameters of the substrate and
both represents combined properties of the substrate/kirigami
composite. Note that in both expressions the effective stiffness
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Figure 4. k-fold axisymmetric postbuckling solutions. Theoretical (lines) and numerical (diamonds) solution for bending and wrinkling of soft circular
composites for different prestretches of the substrate 𝜆. Panel A shows the maximum vertical displacements of different branches of solutions k = {0,
2, 3, 4, 5} (solid lines and diamonds) and the scroll solution (dash-dotted lines and diamonds). Panel B shows the total strain energies for different
branches of solutions. The “cup” axi-symmetric solution branch k = 0 exists for all prestretches 𝜆, however different k-fold axisymmetric solutions might
be energetically more favorable at some 𝜆. The axisymmetric deformation mode k = 0 is preferable in the range 𝜆0 = [1, 1.0381), the twofold axisymmetric
mode in the range 𝜆2 = [1.0381, 1.0608) etc. From 𝜆 = 1.128 on, the scroll deformation mode is energetically preferable.

decreases with increasing cut ratio 𝛼 and does not depend on the
number of the cutouts nc. Analogous expressions can be written
for the membrane stiffness. The effective Poisson’s ratio is 𝜈r𝜃 =
(𝛼/𝜈sub + (1 − 𝛼)/𝜈both)−1.

The relaxation of the compressive membrane forces in the soft
kirigami composite is a result of additional bending in the cir-
cumferential direction of the i-th disk sector (i represents a sec-
tor with only substrate or with both layers). We include this ad-
ditional bending and with it the relaxation of membrane forces
into account by assuming that the bending of the circular sectors
is piecewise linear. The magnitude of such bending deformation
can be calculated from a) the n-fold circular symmetry of the cut
composite and b) the continuity of stresses and the continuity
of deformations. The plate is still modeled as a composite plate,
where the reduction of structural stiffness affects both the out of

plane equilibrium and the in-plane compatibility, while the re-
laxation of membrane forces mainly affects the in-plane compat-
ibility conditions. The obtained leading equations are analogous
to Equations (4) and (5), but differ due to the anisotropy and re-
laxation of the membrane forces due to bending of the kirigami
composite sectors. Therefore, we can use similar approach to so-
lution as in Section S3.1 (Supporting Information).

5.1. Effect of Kirigami on Compressive Membrane Forces

We first search for nc-fold axisymmetric “cup” solution, sim-
ilar to that in Section 4.1. By averaging the nonlinear terms
and using the same model function as for the “cup” solution,
𝜑(r) = C1(r/a)n, we can calculate approximately the membrane

Adv. Mater. Technol. 2023, 2300909 2300909 (7 of 9) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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stresses from the in-plane compatibility Equation (4) for the
anisotropic case.

From this approach, we find that for a fixed prestretch 𝜆, in-
creasing 𝛼 decreases bending stiffness D𝜃𝜃 and Drr, and increases
angle 𝜑, which deepens the “cup”. The deepening of the “cup” re-
duces the circumference of the “cup” and therefore increases the
membrane forces. On the other hand, bending of the disk sec-
tors in the circular direction increases the circumference of the
“cup” and releases some of the membrane forces. Furthermore,
if the number of cut circular sectors is small, e.g., nc → 2, then
increasing the cutout ratio 𝛼 causes large bending of the sectors
and the membrane forces become smaller, see Figure S4 (Sup-
porting Information). Such structure is less prone to loosing its
stability, but lacks axisymmetry. As already mentioned, the ax-
isymmetry is increased with increasing nc. In this case, the cir-
cumferential bending of the sectors does not decrease the mem-
brane forces significantly.

5.2. Buckling Resilience of Soft Kirigami Composite

Next, we analyze the kirigami composite structure “buckling re-
silience”, by posing an alternative problem of loading a stress-free
composite kirigami “cup” shell with a constant homogeneous
compressive membrane force N0 = N0I. We define buckling re-
silience as a magnitude of the membrane force Ncrit

0 needed for
this structure to loose its stability and wrinkle. It is related to
bending rigidity, induced geometric rigidity due to the curvature
of the “cup”, and the fact that the structure can only wrinkle in a
discrete number of wrinkling modes that have to comply with the
boundary conditions and depend on the size of 𝛼 and nc. The sys-
tem is solved numerically via finite element method for different
𝛼 and nc, where we fix 𝜆.

From this alternative analysis (see Figure S5, Supporting Infor-
mation) we can see, that for small number of cuts, e.g., nc → 4,
increasing 𝛼 decreases the bending rigidity, but increases the ge-
ometric rigidity due to the deepening of the “cup”. The overall
buckling resilience therefore increases until 𝛼 ≲ 0.2 and after
that it slowly degrades. However, for a larger number of cuts, e.g.,
nc → 20, buckling resilience increases slightly only until 𝛼 ≲ 0.1,
and then decreases substantially. In the limit, as nc → ∞, we
essentially obtain a homogenized anisotropic structure with re-
duced bending rigidity and reduced buckling resilience.

5.3. Designing a Stable Hemispherical Kirigami Cup

From the analysis of membrane forces and buckling resilience
analyzed in previous subsections, we now understand that a low
number of cutouts, e.g., nc → 4, causes a large relaxation of com-
pressive membrane forces due to circular bending of sectors and
deepening of the “cup” that induce geometric rigidity, which sup-
presses loss of stability (i.e., transition to the k = 2 mode). The
obtained “cup” is relatively stable, but not highly axisymmetric.
Such structures are explicitly shown in Figure S6 (Supporting In-
formation), as reduced membrane forces and increased buckling
resilience do not allow the “cup” structure to loose its stability and
transition to the k = 2 mode. On the other hand, a large number
of cutouts, as nc → ∞, induce a highly axisymmetric “cup”, how-
ever the membrane forces increase, while the buckling resilience

decreases significantly, which pushes the structure to k = 2 con-
figuration already at lower 𝜆.

Turning back to the real loading conditions of our soft kirigami
composite, we further study how the cutout ratio 𝛼 affects the
threshold 𝜆crit for the loss of stability on nc = 10 structure (nc
was chosen as a compromise between axisymmetry and stabil-
ity). We again resort to numerical eigenvalue analysis, where this
time N0 and 𝜿0 are calculated depending on the prestretch 𝜆 and
cutting parameters 𝛼 and nc. The results, compared graphically
with the results from numerical simulations in Abaqus shown in
Figure 5F indicate that there exists an optimal 𝛼 (at ≈0.2 for given
geometric, material and cutting parameters), where the critical
prestretch 𝜆k=2

crit is the largest. However, it is not large enough to at-
tain a pure hemispherical shape without buckling to k = 2 config-
uration first. Counterintuitively, one may rather cut the structure
many times to reach a high axisymmetry and with a large cutout
ratio 𝛼 to lower all the critical prestretches 𝜆k≤nc

crit – so much that the
structure will buckle into k = nc-fold axisymmetric deformation
mode to form a quasi-hemisphere. Technically such structure is
still wrinkled, but because the number of cuts is large enough the
wrinkled shape is close to being axisymmetric.

An example of such structure is given in Figure 5B,C, where
the prestretch is applied to a structure with nc = 10 cutouts and
𝛼 = 0.13. In the first and second case, the applied prestretches
are lower than the critical 𝜆k=2

crit , while in the third case it is larger,
just enough to make the structure to assume the “scroll” form.
Upon increasing the prestretch further, the structure assumes
the hemispherical shape in the fourth case, i.e., when the pre-
stretch just surpasses 𝜆k=10

crit and the structure forms a stable ten-
fold hemispherical axisymmetrical shape. From these results, we
speculate that the mechanical response of the soft kirigami struc-
ture is qualitatively the same as for the uncut soft circular com-
posite plate, except 𝜆k=nc

crit and strain energy are decreased, for the
kirigami composite structure.

6. Conclusion

We have introduced the combination of kirigami and prestretch
as a pathway toward self-assembly of targeted 3D shapes. Our
theoretical analysis and numerical simulations reveal a complex
energy landscape consisting of multiple stable solutions that de-
pends on several geometric and material parameters. To pre-
cisely control such a large number of parameters, we developed
an experimental device that can apply fully homogeneous pre-
stretch. Furthermore, the entire fabrication process happens in a
2D plane, which significantly reduces manufacturing costs and
indicates potential usage in scaled-up industrial applications, for
example self-erecting tents, soft carriers for flexible solar panels
and self-assembling antennas.

Despite our ability to precisely control the associated cutting
parameters and prestretch, achieving targeted 3D shapes re-
quires solving an inverse problem to compute the desired pa-
rameters. In this paper, we adopted hemispherical cap as our
target and presented experimental, numerical, and theoretical
analyses to fabricate soft composites of such shapes. In this
process, we found that cutting parts of a layer can be used to
release compressive stresses and prevent unwanted warping.
We found guidelines on how to choose the appropriate cutting
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parameters (e.g., cutout ratio and the number of cuts) to design
a (quasi)-axisymmetric hemisphere. Even though we focused on
axisymmetric targets in this study to benefit from theoretical sim-
plifications, the gained insights can be coupled with numerical
methods in the future to obtain arbitrary 3D topographies not
restricted to hemispheres. This can be achieved either by ap-
plying a non-symmetric kirigami, see Figure S1 and Section S1
(Supporting Information), or by applying the prestretch locally
across the surface, see,[40] and carefully prescribing the cuts in
the kirigami layer.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
J.Z. and Y.W. contributed equally to this work. The authors acknowledged
financial support from the National Science Foundation (Grants: CAREER-
2047663, CMMI-2053971, IIS-1925360, and CMMI-2101751) and Slove-
nian Research Agency (Grants: J2-9223, J2-2499, and J2-4449). The authors
also thank Kellen Cheng for help with preliminary experiments.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Keywords
kirigami, morphing, prestretch, shell buckling

Received: June 5, 2023
Revised: October 19, 2023

Published online:

[1] S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin,
J. McCracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H.
U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R. G. Nuzzo, Y.
Huang, Y. Zhang, J. A. Rogers, Science 2015, 347, 154.

[2] J. Panetta, M. Konakovíc-Lukovíc, F. Isvoranu, E. Bouleau, M. Pauly,
ACM Trans. Graph. (TOG) 2019, 38, 1.

[3] K. Sim, S. Chen, Z. Li, Z. Rao, J. Liu, Y. Lu, S. Jang, F. Ershad, J. Chen,
J. Xiao, C. Yu, Nat. Electron. 2019, 2, 471.

[4] J. Pikul, S. Li, H. Bai, R. Hanlon, I. Cohen, R. F. Shepherd, Science
2017, 358, 210.

[5] Y. Wang, S. Hu, T. Xiong, Y. Huang, L. Qiu, Struct. Health Monit. 2022,
21, 2453.

[6] M. Ding, L. Jing, H. Yang, C. Machnicki, X. Fu, K. Li, I. Wong, P.-Y.
Chen, Mater. Today Adv. 2020, 8, 100088.

[7] J. Betts, Endeavour 1993, 17, 160.
[8] S. Conti, A. DeSimone, G. Dolzmann, J. Mech. Phys. Solids 2002, 50,

1431.
[9] M. O. Saed, C. P. Ambulo, H. Kim, R. De, V. Raval, K. Searles, D. A.

Siddiqui, J. M. O. Cue, M. C. Stefan, M. R. Shankar, T. H. Ware, Adv.
Funct. Mater. 2019, 29, 1806412.

[10] A. M. Abdullah, X. Li, P. V. Braun, J. A. Rogers, K. J. Hsia, Adv. Funct.
Mater. 2020, 30, 1909888.

[11] L. Ionov, Adv. Funct. Mater. 2013, 23, 4555.
[12] J. J. Wie, M. R. Shankar, T. J. White, Nat. Commun. 2016, 7, 1.
[13] X. Ni, H. Luan, J.-T. Kim, S. I. Rogge, Y. Bai, J. W. Kwak, S. Liu, D. S.

Yang, S. Li, S. Li, Z. Li, Y. Zhang, C. Wu, X. Ni, Y. Huang, H. Wang, J.
A. Rogers, Nat. Commun. 2022, 13, 1.

[14] T. S. Shim, S.-M. Yang, S.-H. Kim, Nat. Commun. 2015, 6, 1.
[15] E. Siéfert, E. Reyssat, J. Bico, B. Roman, Nat. Mater. 2019, 18, 24.
[16] D. Ambrosi, M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D.

Humphrey, E. Kuhl, J. R. Soc., Interface 2019, 16, 20190233.
[17] L. Zhang, S. Chizhik, Y. Wen, P. Naumov, Adv. Funct. Mater. 2016, 26,

1040.
[18] Y. Tang, Y. Li, Y. Hong, S. Yang, J. Yin, Proc Natl. Acad. Sci. 2019, 116,

26407.
[19] J. Cui, F. R. Poblete, Y. Zhu, Adv. Funct. Mater. 2018, 28, 1802768.
[20] N. An, A. G. Domel, J. Zhou, A. Rafsanjani, K. Bertoldi, Adv. Funct.

Mater. 2020, 30, 1906711.
[21] D. Dureisseix, Int. J. Space Struct. 2012, 27, 1.
[22] B. Davidovitch, R. D. Schroll, D. Vella, M. Adda-Bedia, E. A. Cerda,

Proc. Natl. Acad. Sci. 2011, 108, 18227.
[23] G. M. Grason, B. Davidovitch, Proc. Natl. Acad. Sci. 2013, 110, 12893.
[24] B. Davidovitch, Y. Sun, G. M. Grason, Proc. Natl. Acad. Sci. 2019, 116,

1483.
[25] M. Liu, L. Domino, D. Vella, Soft Matter 2020, 16, 7739.
[26] Z. Fan, Y. Yang, F. Zhang, Z. Xu, H. Zhao, T. Wang, H. Song, Y. Huang,

J. A. Rogers, Y. Zhang, Adv. Mater. 2020, 32, 1908424.
[27] M. Pezzulla, S. A. Shillig, P. Nardinocchi, D. P. Holmes, Soft Matter

2015, 11, 5812.
[28] M. Pezzulla, G. P. Smith, P. Nardinocchi, D. P. Holmes, Soft Matter

2016, 12, 4435.
[29] M. Pezzulla, N. Stoop, X. Jiang, D. P. Holmes, Proc. R. Soc. A 2017,

473, 20170087.
[30] M. Pezzulla, N. Stoop, M. P. Steranka, A. J. Bade, D. P. Holmes, Phys.

Rev. Lett. 2018, 120, 048002.
[31] A. DeSimone, Meccanica 2018, 53, 511.
[32] L. Stein-Montalvo, P. Costa, M. Pezzulla, D. P. Holmes, Soft Matter

2019, 15, 1215.
[33] E. Cerda, K. Ravi-Chandar, L. Mahadevan, Nature 2002, 419, 579.
[34] A. F. Bower, Applied mechanics of solids, CRC press, Boca Raton 2009.
[35] L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, A. M. Kosevich, Theory of

Elasticity, 3 edition, Butterworth-Heinemann, Oxford 1986.
[36] C. D. Coman, Appl. Math. Lett. 2012, 25, 2407.
[37] P. Nardinocchi, E. Puntel, Int. J. Solids Struct. 2016, 90, 228.
[38] H. Bense, M. Trejo, E. Reyssat, J. Bico, B. Roman, Soft Matter 2017,

13, 2876.
[39] W. Callister, Materials Science and Engineering: An Introduction, Wiley,

Hoboken, New Jersey, USA 1997.
[40] E. Annevelink, H. T. Johnson, E. Ertekin, Curr. Opin. Solid State Mater.

Sci. 2021, 25, 100893.

Adv. Mater. Technol. 2023, 2300909 2300909 (9 of 9) © 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH

 2365709x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

t.202300909 by U
niversity of C

alifornia - L
os A

nge, W
iley O

nline L
ibrary on [06/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


